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Abstract
In this paper, we present calculations for some of the lowest energy levels 
and lifetimes for neutral helium. The FAC (Flexible-Atomic-Code) is a reliable 
code for calculating 49 energy levels and their lifetimes. The calculation is 
performed up to n=5 including a series of configuration of 1s2 and 1snl. 
Comparison has been made with similar data published in the NIST database. 
A good agreement of less than1% was found for most levels expect the 1s2p 
3P2 level. This proves the reliability of our results. New values for lifetimes 
are presented for the first time.
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Introduction
Atomic data are very much needed for the modeling 
of plasmas1. They are useful for many applications in 
astrophysics and nuclear fusion Tokamak. Moreover, 
the ITER project needs accurate atomic data for a 
wide area of ions. The simplest multi-electron system, 
He-like can play an important role in providing the 
needed accurate atomic data. In previous work, we 
provided calculations of He-like neon2.

We just focus on this study in neutral Helium. For 
this Nobel gas, the atom contains two protons and 
two electrons. The energy structure of the 1snl 
configuration is mainly dominated by the electron-

nucleus and electron-electron Coulomb interactions. 
The separations of levels having belonging to the 
same n multiplicity and having l = s, p, or d are mainly 
determined by Spin-orbit interactions between the 
electrons. The final state is given by the 2S+1L notation 
where n,l,S,L are the standard quantum numbers. 
The quantity 2S + 1 is the multiplicity of the term. The 
S and L momentums are coupled to obtain, J = S + 
L, for a given level. The level is denoted as 2S+1LJ.  J 
being the total angular momentum.

Many experimental and theoretical studies were 
performed for this element. Energy levels have been 
published by the National Institute of Standards 
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and Technology (NIST) and are available at their 
website3. Sow et al.4 performed calculations for the 
2s2 1S, 2p2 1D, 3s2 1S, 3p2 1D, 3d2 1G, 4p2 1D, 4d2 1D, 
4f2 1I doubly excited states of 2≤ Z ≤15. The energy 
eigen-values of doubly excited 2pnp(1Pe) (n=3-8) and 
2pnp (3Pe) (n=2-7) bound states of a neutral helium 
atom were calculated under the weakly coupled 
plasma screening by K. Saha et al.5. Doubly excited 
states in helium are calculated by E. Lindroth6 
with a finite discrete spectrum for states with 
electrons in the n=2 and n=3 states. An approach to 
calculating the energies and widths of resonances 
for neutral Helium was developed on the basis of the 
stabilization method, the energies of 28 resonances 
of nS symmetry with the spin multiplicities n=1, 2, 3, 
and 4 were calculated by I. A. Misurkin et al.7

Therefore, in this paper, we just interest on 
calculations of the singly excited energy levels for 
neutral Helium, namely He I. We employed the fully 
relativistic code Flexible Atomic Code (FAC) of Gu8. 
FAC code provides many different atomic parameters 
such as energy levels, transitions rates and lifetimes. 
In the rest of paper, we shall give, for He I, energy 
levels and lifetimes of the lowest 49 levels belonging 
to 1s2 and 1snl (with n ≤ 5; 0 ≤ l ≤ n-1).

Theoretical Method
We employed for our calculations the widely used 
FAC code of Gu8. We simply give here a short 
description of the theoretical method used by FAC.

By diagonalizing the relativistic Hamiltonian H, we 
get the energy levels of an N electrons atom9
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where HD(i) is the single-electron Dirac Hamiltonian. 
The basis states νφ , which are usually referred 
to as configuration state functions (CSF), are 
antisymmetric sums of products of N one-electron 
Dirac spinors mnκϕ

			   ....(2)

where Xkm is the usual spin-angular function. n is the 
principal quantum number, k is the relativistic angular 
quantum number and m is the z-component of the 
total angular momentum j.

The approximate atomic state functions are 
obtained by mixing the basis states   using the same 
symmetries
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where bv are the mixing coefficients obtained from 
diagonalizing the total Hamiltonian.

Choice of Local Central Potential
To build the Hamiltonian matrix, the one-electron 
radial orbital must be known. According to the 
standard Dirac-Fock-Slater method, the large and 
small components, Pnk and Qnk, satisfy the coupled 
Dirac equation for a local central field V (r)
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where a is the fine structure constant and εnk are the 
energy eigenvalues of the radial orbitals.

Solution of Dirac Equations
The radial orbitals sought have a direct influence on 
the potential, so the Eq. (4) requires a self-consistent 
iteration. In each iteration, the orbitals from the 
previous step are used to derive the potential. 
Consequently, solving the eigenvalue problem 
using known potential is sufficient. As is standard, 
we convert Eq. (4) into a Schrodinger-like equation 
in two steps: eliminating the small component and 
performing the transformation10
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Under this transformation, we have

		  ....(6)

where U(r) is an effective potential defined as

	 ....(7)

We use the standard Numerov method to solve Eq. 
(6). However, it is customary to perform another 
transformation before seeking the solution

			   ....(8)
                                                              

where t(r) as a function of radial distance is suitably 
chosen so that a uniform grid can be used in the new 
variable t, and the corresponding transformation on 
the wave function is to bring the differential equation 
for Ga(t) to a Schrodinger-like form, i.e., without the 
first derivative term

 ....(9)

However, for free orbitals with sufficiently high 
energy, solving Eq. (9) in a conventional way 
becomes impractical. We shall use a different 
approach for continuum states, namely, the phase 
amplitude method.

The minimum and maximum radial distances, rmin and 
rmax, in setting up the radial grid are chosen as

			               ....(10)

where zeff is the residual charge of the atomic ion 
that the electrons experience at large r. The low-n 
and high-n states are treated differently. The dividing 
n0 is determined by the choice of rmax, specifically, 

max0 *5.0 rZn eff= . For n ≤ n0, the orbitals were found by 
outward and inward integration of Eq. (9) with zero 
amplitudes at both ends, and matching at the outer 
classical turning point. Node counting is used to pick 
out the appropriate solution corresponding to the 
quantum numbers n and l. The wave functions are 
then normalized by numerical integration. For n > n0, 
Eq. (9) is integrated outward until r = rcore, where the 
potential has reached its asymptotic Coulomb value. 
For r > rcore, the wave function is the exponentially 
decaying Whit taker function
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where εν /
2
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effZ−= , rZeff=ρ , and λ = l in the non-
relativistic limit8. In the relativistic case, the asymptotic 
behavior of the effective potential is modified 
according to Eq. (7), and corresponds to

		              ....(12)

To normalize the wave function, we note that the 
correct normalization is given by11
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Table 1. Energy levels [eV] calculated with FAC code and compared to data 
taken from NIST database. The last column represents the established 

lifetimes [s-1] for 49 upper levels of neutral Helium.

i	 Level	 FAC (eV)	 NIST (eV)	 Difference (%)	 Lifetimes (s-1)

1	 1s2 1S0	 0	 0	 0.44	 -
2	 1s2s 3S1	 19.90796	 19.81961	 0.49	 -
3	 1s2s 1S0	 20.71812	 20.61577	 0.39	 -
4	 1s2p 3P2	 21.04742	 20.96408	 1.12	 9.69E-08
5	 1s2p 1P1	 20.97935	 21.21802	 0.39	 5.48E-10
6	 1s2p 3P0	 21.04786	 20.96421	 0.39	 9.70E-08
7	 1s2p 3P1	 21.04765	 20.96409	 0.49	 9.70E-08
8	 1s3s 3S1	 22.60505	 22.71846	 0.07	 3.77E-08
9	 1s3s 1S0	 22.90365	 22.92031	 0.98	 5.28E-08
10	 1s3p 3P1	 22.78089	 23.00707	 0.98	 1.06E-07
11	 1s3p 3P0	 22.78091	 23.0071	 0.98	 1.06E-07
12	 1s3p 3P2	 22.78092	 23.00707	 0.91	 1.06E-07
13	 1s3d 3D3	 22.86169	 23.07365	 0.91	 1.42E-08
14	 1s3d 3D2	 22.86169	 23.07365	 0.91	 1.42E-08
15	 1s3d 3D1	 22.8617	 23.07365	 0.91	 1.42E-08
16	 1s3d 1D2	 22.86401	 23.07407	 0.74	 1.56E-08
17	 1s3p 1P1	 22.91453	 23.08701	 0.45	 1.63E-09
18	 1s4s 3S1	 23.70016	 23.59395	 0.6	 7.07E-08
19	 1s4s 1S0	 23.81633	 23.67357	 0.22	 7.17E-08
20	 1s4p 3P2	 23.7607	 23.70789	 0.22	 1.83E-07
21	 1s4p 3P1	 23.7607	 23.70789	 0.22	 1.83E-07
22	 1s4p 3P0	 23.76071	 23.7079	 0.65	 1.83E-07
23	 1s4d 3D3	 23.89074	 23.73609	 0.65	 3.31E-08
24	 1s4d 3D2	 23.89075	 23.73609	 0.65	 3.31E-08
25	 1s4d 3D1	 23.89076	 23.73609	 0.65	 3.31E-08
26	 1s4d 1D2	 23.89206	 23.73633	 0.44	 3.62E-08
27	 1s4f 3F3	 23.84329	 23.737	 0.44	 7.24E-08
28	 1s4f 3F4	 23.84329	 23.737	 0.44	 7.23E-08
29	 1s4f 3F2	 23.84329	 23.737	 0.44	 7.23E-08
30	 1s4f 1F3	 23.8433	 23.737	 0.31	 -
31	 1s4p 1P1	 23.81709	 23.74207	 0.4	 3.64E-09
32	 1s5s 3S1	 24.06811	 23.97197	 0.47	 1.43E-07
33	 1s5s 1S0	 24.12503	 24.01121	 0.31	 6.83E-08
34	 1s5p 3P2	 24.10452	 24.02822	 0.31	 5.31E-07
35	 1s5p 3P1	 24.10452	 24.02822	 0.31	 5.31E-07
36	 1s5p 3P0	 24.10453	 24.02823	 0.68	 5.31E-07
37	 1s5d 3D3	 24.20621	 24.04266	 0.68	 6.93E-08
38	 1s5d 3D2	 24.20622	 24.04266	 0.68	 6.93E-08
39	 1s5d 3D1	 24.20623	 24.04266	 0.68	 6.93E-08
40	 1s5d 1D2	 24.20697	 24.0428	 0.43	 6.32E-08
41	 1s5f 3F3	 24.14813	 24.04315	 0.43	 1.40E-07
42	 1s5f 3F4	 24.14813	 24.04315	 0.43	 1.40E-07
43	 1s5f 3F2	 24.14813	 24.04315	 0.43	 1.40E-07
44	 1s5f 1F3	 24.14814	 24.04315	 0.44	 -
45	 1s5g 3G4	 24.15056	 24.04321	 0.44	 2.35E-07
46	 1s5g 3G5	 24.15056	 24.04321	 0.44	 2.35E-07
47	 1s5g 3G3	 24.15056	 24.04321	 0.44	 2.35E-07
48	 1s5g 1G4	 24.15056	 24.04321	 0.36	 -
49	 1s5p 1P1	 24.13335	 24.0458	 0.44	 7.27E-09
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where µ is the quantum defect. The quantum defect 
of a Rydberg atom refers to a correction applied to 
the equations governing Rydberg atom behavior. For 
a non-hydrogen atom –alkali for example- the binding 
energy of the Rydberg states is ε = Ry/( n- δ)2  where 
δ is the quantum defect and Ry is the Rydberg 
constant. For high n states we are concerned with, 
(νn) = 1 is a very good approximation.

Results and Discussions
The calculation is performed up to n=5 which 
generate up to 49 levels. The 1s2, 1snl (n=2-5) 
configurations are given in Table 1. We compare in 
this table our energy levels from FAC code with the 
level energies published by NIST3. The differences 
presented by percentage in the Table are very small. 
Our calculated energy levels agree within 1%, the 
only case where the difference is larger being for 
the 1s2p 3P2 level. One can see that results from 
these two calculations match well for most of the 
levels and proves that our results are consistent. 
We can state with confidence that the results are in 
good agreement to the other published values for 

the energy levels of He I. New values of lifetimes 
are presented in the same Table 1.  

Conclusion
We have presented in this paper results for energy 
levels among the lowest 49 levels, for He I. Based on 
the experimental published results in NIST database, 
our energy levels are accurate to better than 1%. 
Moreover, we presented the results for the lifetimes 
for almost levels of study. Good agreement between 
our calculated energy levels for He I and the available 
NIST data reflects the quality of calculation of the 
wave functions.

As we don’t have other results of lifetimes, we expect 
that the present set of results will be highly useful for 
comparison with other future experimental work.
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