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Abstract

ideals of the algebra,

DNlip,z,0 < af <+

We show the validity of a complete description of closed

where D is the algebra of series of analvtic functions
satisfying the Lipschitz condition of order asz obtained by."®
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Introduction

The Dirichlet space D consists of the sequence of
square complex-valued analytic functions sz onthe
unit disk D with finite Dirichlet integral

ZD(ff):: fmz |(fj_2)’(z)|2 dA(z) < 4o,

7 5

where dA(z)= %(1 — e)d(1 — e)dt?

denotes the normalized area measure on D.

Equipped with the pointwise algebraic operations
and the series of norms

Banach Algebra;
Closed Ideals;
Convex Hull;
Hardy Space;
Holder Inquality.

1 [ 2 N —
S = Ef SlrrEaz+p(R) =Y.y a+nlFEml,
7 °© g

n=0"j

D becomes a Hilbert space. For 0< ajz <1, let lip
a} be the algebra of sequence of square analytic
functions f;* on D that are continuous on D satisfing

the Lipschitz condition of order ajz onD:

DlEm—rre—ol = ol )
J J

Note that this condition is equivalent to

(le]l = 0).
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(z| = 17).

ij)(z)l Zo((l—lznf‘fl)

Then, lip af is a Banach algebra when equipped
with series of norms

27l =

Here

Zillr.

DN+ sup Yt =120 TG @I - 2 € Dy
J j

'= SUPgep 2; |fj2(Z)|-

Unlike as for the case when 0< af <1/4, the inclusion
lip @ =D always holds provided that 1/4< a; <1.
In what follows, let 0< a} <1/4 and define

rﬂ,az_ =DnN lipag
J J
It is easy to check that A ajz is a commutative
Banach algebra when it is endowed with the
pointwise algebraic operations and series of norms
il +X;D2(f7)
g

= L7, U} € A

In order to describe the closed ideals in subalgebras
of the disc algebra A(D), it is natural to make use of
Nevanlinna’s factorization theory. For

feAD)

there is a canonical factorization = C,z2U,20,2
i 5

where (. is a constant, U a sequence of square
inner funct|ons that is !

2jlUpzl =1aeonTand Op2
7 7

the sequence of square outer functions given by

ZO 2(z) = exp{zﬂfzn Z

Denote by H” (D) the algebra of bounded
analytic functions. Note that ajz has the so-called
F-property 22 if f? € Ay

10g|f (elﬂz)|d92}

and U is an inner function such that f;*/U € H* (D)
then

71U € At and S5/01,, <%l where c,;
is independent of sz. Korenblum® has described
the closed ideals of the algebra H? of sequence of
square analytic functions }jz such that (]j.z)'e ?
where H? is the Hardy space. This result has
been extended to some other Banach algebras of
sequence of square analytic functions, by Matheson
for lip ajz 9 and by Shamoyan for the algebra

(n)
e

of sequence of square analytic functions sz onD
such that

I IHP =200 = ()P (2~ 201 — )] = o(w(le])) as || = 0

where n is a non negative integer and w an arbitrary
nonnegative non decreasing subadditive function
on (0,+x)."" Shirokov'® '2 had given a complete
description of closed ideals for Besov algebras

6%

1+€1+4€

of sequence of square analytic functions and
particularly for the case e >0.

1
anz) = {(fﬁ eam): ) ) [ a+m) < oo}

nz0 j

Note that the case of ABZ%Z =AD)ND

the problem of description of closed ideals appears
to be much more difficult (see® 4). Brahim Bouya'®
described the structure of the closed ideals of the
Banach algebras A o More precisely he proved
that these ideals are standard in the sense of the
Beurling-Rudin characterization of the closed ideals
in the disc algebra’, we show the general validation
following'®

Theorem
If I is closed ideal of cﬂa]_z , then

3= {sz € Aue: ([P hg, = 0and f/Us € 5—[""(]]))},
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where
Ex={zeT:%;f(2) =0,vf’ €1}
and

U, is greatest common divisor of the inner parts of
the non-zero functions in T .

Such characterization of closed ideals can be
reduced further to a problem of approximation of
outer functions using the Beurling— Carleman—
Domar resolvent method. Define d(&,E) to be the
distance from & e T to the set E < T. Suppose that

T is a closed ideal in A . such that U, =1.
1

We have Ze =E+, where

Ty = {z c @:ijz(z) =0, vf? ei}.
J

Next, for ]3—2 € :Aa]_z such that

L@ < L0dEE) T (@ e,

where M . is a positive constant depending only on,
]

cﬂajz we have sz € T (see section 3 for more
precisions). Now, to show Theorem (1.1) we need
Theorem (1.2) below, which states that every
function in cﬂajz \{0} can be approximated in cﬂajz

by functions with boundary zeros of arbitrary high
order.

Theorem
Let sz be a function in cﬁlajz \{O}and let €>0.

There exists a sequence of functions

{(g)n)p=1 © A(D) such that

ForallneN, we have ¥;(f), = X; f*(g)n € A
and

Limpoo Sl (50 = 1, =0
.

]

L@@ <8 Cd™* (8 Ep2) € €T

where
Epzi={CET: YA€) =0}

To show this Theorem, we give a refinement of the
classical Korenblum approximation theory./8 % 11.13.12

Main result on approximation of functions in
A
o

Let f;'z €A and let {Yn = (an: (a + E)n)}nz{l

be the countable collection of the (disjoint open)
arcs of T\E,z .

We can suppose that the arc lengths of y_are less
than 1/2. In what follows, we denote by T" the union
of a family of arcs y, . Define

1 io? 2
Z(Gz)r (2) = exp {ﬂﬁzzgz—:bgmz(e‘g )|d92¥.

The difficult part in the proof of Theorem (1.2) is to
establish the following

Theorem
Let Let /7 € Az \{0}

be an outer function such that Z]—"]j-z"cﬂ =1
?
]

and let €>1and e > 0.Then we have

SO ()R € A and supr X |20 ()20 I, <Cuesse-
of

(1)

where C. +¢,1+¢) is a positive constant independent
of T.

Remark

For a set S = A(D), we denote by co(S) the convex
hull of S consisting of the intersection of all convex
sets that contain S. Set I' = U s Vnse

and let sz be as in the Theorem (2.1) ltis clear that
the sequence

(E2(1+E)(]3')12"I(11+6) )
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converges uniformly on compact subsets of D to
2(1+¢€)
Jj

We use (2.1) to deduce, by the Hilbertian structure
of D, that there is a sequence (hf)n €

co(UfF (RN,

converging to sz(“d

we obtain that

in D. Also, by [9, section4],

f(+5)

(hz)n converges to in lip ajz , for

sufficiently large (1+€) (in fact, we can show that this
result remains true for every e > 0). Therefore

2(1+¢€) -0

] (G

as n — w

|€;[ !
2
j

Define J(F) to be the closed ideal of all functions in
A of thatvanish on. F c D Inthe proof of Theorem
(1 .2), we need the following classical lemma (see’)

, see for instance [°, Lemma 4] and [, Lemma 24].

Lemma
Let [ € Agz and E' be a finite subset of T such that

i fPIE =0.Let >0

be given. For every e > 0 there is an outer function
F in J(E') such that

2 2
Bl -, <

IF(OI < Cd'™(§,E) (€T

Proof of Theorem

Now, we can deduce the proof of Theorem (1.2) by
using Theorem (2.1) and Lemma (2.3) Indeed, let
be sz a sequence of functions in c/lajz\{o}

such that |7, <
j

and let € > 0. For e > 0 we have

Dire=17) = 2 (oF )y + 3 ooy

]

The F-property of ajz implies that 0> € Az
J ]

Then, there exists 17y € N such that

2ATHE g2 €

' 01+E —_ " || < _

Z ”ff i fi 4 3
J aof

Set I,

(e=0)
= Uqyesn Vige and ajz <1 fora given

€2 0.By Remark (2.2) applied to 0. (with € >0),
7

there is a sequence k, ,, . € co ({(ﬂ) 11;,5 }oo )
such that 1red e=p

Z 2+€ 2+€ 1
05k, 10— 05¢ < (neN, €¢=0)
- 7 b A 1+e
It is clear that
Trer A2 2(146) e .
0 (f; -0zl —o0 (n — +0)
7 7T
Then for every e >0 we get
N N
Yot -0z =0 @+
— |l fj ' fi
I
So, there is a sequence
2(1+¢€)
e € co ({E))
such that
2+4€ 24€ 1
0% ky,.— 0" < (e=0),
Z f}_z 1+€ sz a 14¢
]
1ive _ i+e =
pY [ CSrp (20
i

We have

1

0 (0 o - 1707 -
2 (0P = U205 ) (05 v -

2+€ 2+€6\ !

o) 5,00 b 0F)
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Since
2
¥ ||osz <YiCelffll . SXjCe
af !
]
we obtain
,fj_zofl? 7,‘1.20)3}? B

A

1 1 !
AP N
+ Supzen{Z(lm) |70 e = 17053 }+
J

(f 0% ky, . f; 01+5) (2)
1 1
Z D3 (7203 ke~ ffo;f)z Clfl g

++supep {Z(l — paef }
2+€

+ Z D2(f )+ cnzz (0H ki — o“f)

>

]

+cz <zf

1
e
kue -0

.
OJ+ Kppe — EZOI+E

O 1+ Kive — 0 1+e

+cz
Y el
j

2+€ 24¢

01 Kyve — Ol+f

k1+s - O ﬁ

Then, fix e > 0 such that

<€/3
c;zajz

Z ||,§ 075 ky e — f2 01+f (e 2 0).

2(1
ZI<J’1+Ez:} f(+6)

We have k1+e

where

ZK} 1 Set E1+E = Ul<j1+€ a]/l

Using Lemma (2.3), we obtain an outer function
Fiye € J(Ef4e) such that

|F1+E(O| < Cl+ed1+e((rE1r+e) and

1
0‘* liseFiee = f7 01+Ek1+6 ’ < e (ez1)
J of
]
Then fix e > 0 such that
, L
ZH); O haehioe= 0T e <3 (20
] A o

o

Consequently we obtain

Fae=fF|  <e (€2 0)
A2
]
It is not hard to see that
Do Fi®| = Y et (65;)  GeD
T T
Therefore
1
2 — 1+€e
Zj(gj)1+e - Zj Of_z k1+EF1+E
J

is the desired series of sequence, which completes
the proof of Theorem (1.2).

Beurling — Carleman — Domar resolvent methed

Since A . c lip,z »thenforall ]32 € cﬂajz, Efz
i i j

satisfies the Carleson condition

1
log————dt* < +w
IEZ d(é‘” ,Esz)

For ]‘}2 € A,z ,
j

we denote by sz
)]

the Blashke product with zeros Zfz \Efz ,
j J

where 7/

= {z€D: Y, ff(2) = 0}

We begin with following lemma (see'™).

Lemma
Let % be a closed ideal of rﬂajz

. Define g,
to be the Blashke product with zeros Z;\Fy

There is a sequence of functions f}z eEX

such that BJGZ = By
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Proof
Let g7 € T and let B_ be the Blashke product with
zeros

ng N D, , where (g?)n

D, ={z€D:|z| <™=, neN}

where K =B /I and | is the Blashke product with
zeros

Zgjzﬂ]IDn.We have (g?)n €lfor every
n. Indeed, fix neN.

It is permissible to assume that Zy consists of a
n
single point, say

Zy = {z—¢€}Lletm: A > Ap/T
i i
be the canonical quotient map. First suppose
(z—€) & Zy then m(K,)) isinvertible in
Az /T . It follows that
Y 3, =Y o~ YKY=0
j(gin = 2;m(gi)n™ (Ky,) =

hence (gjz-)n eEX

If (z—€) € Zy , we consider the following ideal

Jz-e = {f}z € dqa]? ' f;r'zln € 3:}

It is clear that (J,_. is closed. Since

(z—€) €Zy, _ ittoliowsthatK_isinvertible

in the quotient algebra A 2 /J;_. and so
]

2
gj/(InKy) € Jz—¢ Hence (g7), €T
Itis clear that (g3)n
converges uniformly on compact subsets of D to
Zj sz = E](QJZ'/BQJ%)BE
and we have ;B = By .
i
In the sequel we prove that

If we obtain

2.1, @l= 2. (=)

i

(zeD)

’

uniformly with respect to n, we can deduce by using
[9, Lemma 1] that

=0.

lim,, 0 2 || (912),1 - ﬁ"z |

2
%

Indeed, by the Cauchy integral formula

d(z—2¢) (zeD)

Hz=20)-g}(z/12) | Ky(z = 26)
- iLZ(g]Z € 9}4:22) 7-2¢

Then, for z= (1 —€)e'®” € D

' Kollo 2(z —2¢€) — g*
X (1) o= e [ SRS e 2o

1

L[yl g,
2m)_, -

(26 — 1) cost? + (1 —€)?

Forall e >0, thereis € >0 such thatif [t?I<n, we have
Zj|g]?(ef(f2+92)) - g]? (ef92)| <3 £|t2|“l'2 (6% € [—m, +7])

Then
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j:rt Z |g]2(ei(r2+62)) _ g}z_(eigz)l dtz
s (2e = 1) cost? + (1 —€)?
21

< dt
= gf‘tz‘snz 2t a(l—e)Z /n?

2

Xt f K
g] |e2|<n EZ +4’(1— E)tz /7'[2
400 0(

<
_Z f 1+(2u/7r)2

7

||g]||ajz "

Yy — 9 S

. L _Jup@ L1+ Qu/ ot

2 € ] T € ]

<20 (5m) + Zhoilo ()
= & e ; .
- El—a]-z - 9; ajz El—ajz

I

we obtain

T |gj§(ei(t2+62)) _ g? (eiﬁz)l .
bj_ Z dt

s (2e = 1) cost? + (1 —€)?
1
2
< Dleillgo (=)
Consequently

Y1) @] = Yl go(5) wew
7 7

By the F-property of A 2
j

, we have

il [CAN EIA (CHN

Using the Hilbertian structure of D, we deduce that
there is a sequence (h}), € co ({(gjz)k}fzn)

. 2 . .
converging to ]3, in D. It is clear that

(h), €T andlim,_,.. ;]| (h7) - 7| =0

o
Then

limyeeo X, | (2), = 7| =
]

Thus
]j.zez

This completes the proof of the lemma.
We can see that

o(F5)=20(=)

As a consequence of Theorem (1.2), we can show
Theorem (1.1) and deduce that each closed ideal of

[N

Ay

is standard. For the sake of completeness, we sketch
here the proof,(see').

Proof of Theorem
Define y on D by y(z)=z and let = :

cﬂ,ajz - cﬂajz /3 be the canonical quotient map.

Also, let sz € J(Ey) be such that

2 2
fi Uz € HZ(D) and ()
be the sequence in Theorem (1.2) associated to

2
f;; with € > 2. More exactly, we have

Zf(}j"z)n = Z;Jﬂz(gf)n , where

%i1(g7), I < X;d° (& Ep2) < d° (8, Ex)

Define

f(2) = ()

_ z—4
S L) =1 d
j

Y@
j

ifz+ A,

ifz= A
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Then
¥ H(ﬂz)(n(y) —-Dt=

+Zrz L,l(jj-
i

It is clear that(n(y)-1)" is an analytic function on
C\Zsz -

=X D@0 -0

Note that the multiplicity of the pole
Zo € Ze NID of (m(y) —A)~?
is equal to the multiplicity of the zero z, of Us

Since U, divides sz, then according to® we can
deduce that

() () =~

is a series of square analytic functions on

C\Es. Let [A| > 1, we have

Z||n(m<n<y>—a>-1||ﬂ

lef, I, ZZnym Nl

ln()}

< Zufj I, TR

By Lemma (3.1), there is

gf— € T such that

Byz = By Letk = ¥,£7(0]/By2) .

Then,

k =%;(f#/B:)g? € T andfor 4] < 1
we have
k(D) (m(y)

=0t = =)

Therefore

len(fﬁ)(rrw) -0, < Zlfﬁu)lucncy) =) g

||L,1( )||J1 of
+z||w, M, Z
< Zc(sz,k)el g

J

C(f] k)
T (1-14) |9} /B

(|/1| <1).

We use [14, Lemmas 5.8 and 5.9] to deduce

el )etr) 571 = LUk

d({E)'J’ (I=<)fls2 ¢ekEy)

Then, we obtain

£ = il (@) @) - H7H € L°(T)

With a simple calculation as in [5, Lemma 2.4], we
can deduce that

1
D m(U7n) = 5 [ D (@@ - 97ia
J

J
Denote
I (Ex) = {h}? € AD): (B)\z, =O0andh? / Uz € A(ﬂ))}
From [7, p. 81], we know that T3, (E3)
has an approximate identity (e; +¢)e=o € T such that
lleisellee < 1. T isdense in Tf, (Ex)
with respect to the sup norm ||| , SO there exists
(Ur+e)ezo € T with [[U4ello = 1 and

lim1+e—>ooul+e(‘f) =1 fOI‘f € FII‘\E"I - Therefore
Zj ”((f}z)n) = Zjﬂ' ((sz)n - Ui,-z)nunf) — 0 as € = oo,
as € — o Then

(fAn€T and [f €T .

Note that: if
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lim, o X (09| = X1 @D 1E]

then,

Yed e Bp) = X d%E Ep)

Proof of Theorem

The proof of Theorem (2.1) is based on a series of
lemmas. In what follows, C, _will denote a positive
number that depends only on 1+¢, not necessarily
the same at each occurrence. For an open subset
A of D, we put

le((h?)’llizm =J;Z|(sz)'(z)|2dA(z)
J 7

We begin with the following key lemma (see15).

Lemma (4.1)
Let ff* € A be such that

and let e > 0 be given. Then

2(1+€)

e

12
dt? < Z Cl+e”(fj2) ||L2(Y)
]
where q,a+e€FE:,y=(a,a+¢) CT\E}}_Z ,

d(z) :=min{|z —a|,|z — (a + €)|} and
Ay={zeD:z/|z| €y}

Proof L
Let eit” € y and define z,2 := (1 — d(e'*"))e™
Since lyl<1/2, we obtain |z,z| > 1/2.

We have Zj”f’z”ﬂaz <1
]

Z |fj2(eit2)|2(1+e)

J
< z ZZEH(lf]—Z(eifzj _ sz(zt2)|2(1+e)
+ |é-2(ztz)|2(1+f)). -.(6)

By H"older’s inequality combined with the fact that

il = ZillAPl, =1 we get
“

Zlf () = [P @)|?79 = Z|f, (") = [P @) |7 (") = [P (@)l
< 241~ zal) f ZI(f,)(u o) (1= (1 -0

< 2 (o) f Zlm Y(@ o) (- -e).
°T

Hence

2(1+€)

[SEE L,

d(eltz

_2(25+1) fi it2 2(1 _ )d 1 —e)dt?
ny;Zm(re | @ -oda-¢
< z 2(25+1)7T||(f}'2)'||i2(Ay)_ (7)
j

Since d(eit") < 1/2 , we obtain

it2 .
W) < dz) < VEZd(e)Put d(z2) = |22 — €]

and note that either { = a or & = a + €. Let
Ze2(u) = (1 —w)zez + ué (0=su<l)

With a simple calculation, we can prove that for all
eit? y
and for all u ,0<u<1, we have

|z2(w) —w| > (1 —u)d(e") (w € DA,). where dA,
is the boundary of Ay. Then

Dez,, =z € Di|z — z2t2(W)| < 2(1 —w)d(e™ ")} = A
forall et” ey
and for all u,0<u<1. Since X;|(f;*)'(2)|

is a series of subharmonic on D, it follows that

<) 4
Ny Co) = s [ DIy @liae)
7 e’

2
e — E 2y i
B n%(l —u)d (e?) < oy “LZ(AV)
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Set g(146) = Zajze.

We have

2
Zlf}ztws) (2.2)
i

=1 +ePlz2 - ¢

_ Z|f:,'2u+5)(zz1) _ f}21_1+5)(§)|2
j

2

[ ¥ i)y G
j

<Cl+5d2(e“z)( j Zztz(u)e‘“z*‘(ﬁ)'(ztz(u))du)
07
= C1+Ede1+s(eiz2) (f (17 ) Z“(f] ) ”LZ(A )

= G (&) DNV I,
J

Hence

[yl

Therefore the result follows from.57ad8

200 (8)

ar* < Gl
j

In the sequel, we denote by [ a series of square
outer functions in <A 2 such that
1

S, <
1

and we fix a constant 1 + € ,0 < e<1. By [9, Theorem
B], we have

2(1+ 2(1+e) _ .
f:f ) (fj)r € llpﬂjz and

=l G

. = Cl +el+e-
lip 2 .
1

To prove Theorem (2.1) we need to estimate the
integral

i ) 2
J-]D Ej|fj2(_1+e) (}(}2(_l+e)),| dA(Z). .

Define

2@ = fZ(Iaz,

Clearly we have

PAGREORS

~log|f7(e®")| do>.

1 eiﬂz 2, i82 2
;LZmiog\fj (e"")[de?. and

S ()XY =+ () (@ -

— Y+ E)J‘J-Z(He)(ﬁ)iuﬁ) (gD
...(10)

2(1+ 2(14+€)y,
DI/

=Y Uy (6), " =Y A o ) (e
i i

(11)

Since 3|/ ||, < 1. itis obvious that

2(1+¢€)

T = vand Bl < 1.

Hence, by'! we get

(sztus) (fj)?lﬂ))’r dA(z)

< 2(1 +¢)? i (f}zt_u-e) (ﬁ)itue))'r 4.

We fix y = (@.a+e) cT\Ep»
suchthat X; f7(a) = X; f(a+¢€) =0

Our purpose in what follows is to estimate the integral

(5707 (5)2) | aa

(13)

which we can rewrite as

o= ]

Where
Ap= {z EA:d(z) <2(1— \z|)]
Al= {z EA:d(z) =2(1— \z|)}

The integral on the region Al. We begin with the
following lemma (see’®).

Lemma (4.2)
2(1+¢€)

£ ) - f] @/
f Z — 2D

1 .
dA(z) < Z@ (7] P
I

Proof
Letz= (1 - e)eit’ € A,
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and put €4 = 2a{e. We have

2(1+e)

Z(l —€) |f]2 ((1 — €)eit? )_sz (enl)
=Ya-alf (-9
]

1 2
<-gerwo [N | o)
(1-€) =
J
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This completes the proof.
Now, we can state the following result (see').

Lemma (4.3)
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By Cauchy’s estimate, it follows that
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Using Lemma (4.2), we get
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Using Lemma (4.1), we obtain
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The result of our lemma follows by combining the
estimates.'4and 15

The integral on the region A . In this subsection, we
estimate the integral
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Before this, we make some remarks. For ze D define
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Using the equation, it is easy to see that
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Then
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Since log If If? 1€ *(T)., we have
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Given such inequality, it is not easy to estimate
immediately the integral of the series of functions

Y17 (@)24*<a2(z) on the whole A2

In what follows, we give a partition of A§ into three
parts so that one can estimate the integral
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three situations are possible :
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We can now 4 into the following three parts

2= (z € AZ: z satistying (20)},
22.— [z € AZ: z satisfying (21)},
23— {z € AZ: z satisfying (22)},

The integral on the regions A7 and A7® . In this case
we begin by the following (see')

Lemma (4.4):
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Let ¢’ €y and denote by (z — 2¢),> the point of
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Using Lemma (4.1), we get
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Lemma (4.5)
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)is the area measure of 4, .
Proof

Set
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Let € A2° We have
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Using,'® we obtain the result.

The integral on the region e A22. Here, we will give
an estimate of the following integral

[
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Before doing this, we begin with some lemmas
(see™).

a;(z)dA(z).

The next one is essential for what follows. Note that a
similar result is used by different authors: Korenblum,?
Matheson,® Shamoyan,'" and Shirokov.® 12

Lemma (4.6)
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Proof
Let z € Ayand let p<1.We have
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Without loss of generality, we can suppose that
d(z) < § ZE A,Z, . We need the following (see'™).
Note that: we deduce that
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Lemma (4.7)
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Where

Sigeg) = D:0< <(1-e)and —°
S1-e) = {(Z—E)E 0<|z—€l<(1—€)an mey}.
The proof is therefore completed.

The last result that we need before giving the proof
of Theorem (2.1) is the following one (see’).
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Using ' and Lemmas (4.6) and (4.7), we find that
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This completes the proof of the lemma.

Conclusion
Now, according to (18) and Lemmas (4.4), (4.5) and
(4.8), we obtain
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Combining this with Lemma (4.3), we deduce that
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This completes the proof of Theorem (2.1)
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