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Abstract
In this work, we apply the geometric Hamilton-Jacobi theory to obtain 
solution of Hamiltonian systems in classical mechanics that are either 
compatible with two structures: the first structure plays a central role in 
the theory of time- dependent Hamiltonians, whilst the second is used to 
treat classical Hamiltonians including dissipation terms. It is proved that the 
generalization of problems from the calculus of variation methods in the non 
stationary case can be obtained naturally in Hamilton-Jacobi formalism.
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Introduction
Since Bateman proposed the time-dependent 
Hamiltonian in a classical context1 for the illustration 
of dissipative systems, there has been much 
attention paid to quantum-mechanical treatments of 
nonlinear and non conservative systems. In studying 
nonlinear systems, it is essential to introduce a time-
dependent Hamiltonian which describes the frictional 
cases. This was discovered first by Caldirola,2 and 
rederived independently by Kanai3 via Bateman's 
dual Hamiltonian, and afterward by several others.4

Hamilton Jacobi equations (HJE) are nonlinear first 
order equations which have been first introduced in 
classical mechanics, butfind applications in many 
other fields of mathematics. Our interest in these 
equations lies mainly in the connection with calculus 
of variations and optimal control.

However, Hamilton-Jacobi method has been studied 
for a wide range of systems with time-independent 

Hamiltonians. For systems with time-dependent 
Hamiltonians, however, due to the complexity of 
dynamics, little has been known about quantum of 
action variables.

However, Hamilton-Jacobi theory builds a bridge 
between classical mechanics and other branches 
of physics. Mainly, the Hamilton–Jacobi equation 
can be viewed as a precursor to the Schrödinger 
equation.5-11

Our primary goals will be to extend the HJ formulation 
for time-dependent systems, building on the previous 
work by Rabei et al. (2002), the idea is to construct the 
Hamiltonian function and the corresponding equation 
of motion for dissipative systems. The methodology 
for that, the principal function is determined using 
the method of separation of variables. The equation 
of motion can then be readily obtained. 
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Hamilton-Jacobi Formalism
We start with the Lagrangian 

L= L0 (q,q ̇ ) eλt ...(1)

Here L0 (q,q ̇) stands for the usual Lagrangian and λ 
is the dissipation factor. The generalized momentum 
is defined by.12

pi= ∂L / ∂q ̇i  ...(2)

The corresponding Hamiltonian is

H(q,p,t)= pq ̇-L ...(3)

Hamilton's Jacobi equation is differential equation 
of the form:

H (q1……qn ; ∂S / ∂qi ,……,∂S / ∂qn ; t) + ∂S / ∂t = 0 
...(4)

It is a partial differential of (n+1) variables, q1..qn; t.

The complete solution of Eq. (4) can be written in 
the form6

S= S(q1…….qn  ; αi……αn; t) ...(5)

Eq. (5) presents S as a function of n coordinates, the 
time t, and n independent quantities αi. 

We can take the n constants of integration to be 
constants of momenta:

pi = αi ...(6)

pi  = ∂S(qi ,αi ,t) / (∂qi )  ...(7)

The relationship between p and q then describes the 
orbit in phase space in terms of these constants of 
motion, furthermore the quantities

∂S / (∂qi ) = pi ...(8)

Are the equations also constants of motion, and 
these equations can be inverted to find q as a 
function of all α and βconstants and time.

Thus, the Hamilton-Jacobi function is given by

H(q,p) + ∂S(q,t) / (∂t) = 0 ...(10)

The resulting action S is 

S= ∫ L dt + constant ...(11)

or

S= ∫ L0 eλt dt = ∫ (pi q i - H) dt ...(12)

We must write S in the separable form

S (q,α,t) = W (q,α) + f (t) ...(13)

Thetime-independent function W(q, α) is 

sometimes called Hamilton characteristic function.
  
Differentiating Eq. (13) with respect to t, we find that

∂S / ∂t = ∂f / ∂t ...(14)

From Eq. (10), it follows that 

∂f / ∂t = -H ...(15)

Therefore, the time derivative ∂S / ∂t in HJE must 
be a constant, usually denoted by (-α).

S (q,α,t) = W(q,α) - α(t) ...(16)

It follows that

H (qi,∂W / (∂qi) = αi ...(17)

The equations of transformation are

pi = ∂W / (∂qi) ...(18)

Qi = ∂W / (∂αi) ...(19)

While these equations resemble Eq. (7) and (8)
respectively for Hamilton’s principal function S, the 
condition now determining W is that it is the new 
canonical momentum αi

H (qi,pi) = αi (...20)

Examples
Friction Linear in the Velocity
The Lagrangian depending on time is.13-14

L= L= 1/2 eλt x 2̇ ...(21) 
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The linear momentum is given by

 ...(22)

This equation can readily be solving to give

 ...(23)

The canonical Hamiltonian has the standard form

H= px ̇ - L ...(24)

Now, substituting Eqs. (21) and (23) into (24), we get

 ...(25)

The momentum can be computed from

p =  ∂S / ∂x ...(26)

Substituting Eq. (26) into Eq. (25), we find that

 ...(27)

The Hamilton-Jacobi equation is

H + ∂S / ∂t = 0 ...(28)

Substituting Eq. (27) into Eq. (28), we get

 ...(29)

With the change of variable,

 ...(30)

we can eliminate the factor τ in Eq. (29) which is 
transformed in

 ...(31)

Now it is possible to propose 

S (x,α,τ ) = W(x,α) – ατ ...(32)

That is

 ...(33)

  ...(34)

Substituting Eqs. (33) and (34) into Eq. (31), we get

 ...(35)

So that

 ...(36)

Taking the square root of each sideof Eq. (36), we 
have

∂W / ∂x = √α ...(37)

Integrating Eq. (37), we have

W = √αx ...(38)

Substituting this value of W into Eq. (32), we get

S = √α x - ατ ...(39)

Returning to the variable t results in 

 ...(40)

Then we can obtain 

p = ∂S / ∂x = √α  ...(41)

and

 ...(42)

We impose the initial condition x0= 0 for t = 0, which 
gives

β0  = 1 / 2λ ...(43)

Substituting Eq. (42) into Eq. (43) we can get the 
expression for x,

 ...(44)

Then

 ...(45)

The value for α is set from equation (41), taking  
p= p0 for t = 0, that is

√α = p0 = v0 ...(46)
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Finally, we have

 ...(47)

In fact, this result is in agreement with that obtained 
by Euler'sequation.

Friction Quadratic in the Velocity
It is also known that the equation of motion for a 
particle with Newtonian friction f = -mλv2 can be 
derived from the Lagrangian.14,15

 ...(48)

The linear momentum is given by

p = ∂L / ∂x ̇ = x ̇e2λx ...(49)

This equation can readily be solved to give

x ̇= pe-2λx  ...(50)

The canonical Hamiltonian has the standard from

H= p x ̇ - L ...(51)

Equation (51) becomes

 ...(52)

The momentum can be computed from

p = ∂S / ∂x ...(53)
 
Substituting Eq. (53) into Eq. (52) 

 ...(54)

With this Hamiltonian we can write the Hamilton-
Jacobi equation

 ...(55)

It is possible to propose

S (x,α,t) = W (x,α) – αt ...(56)

That is 

∂S / ∂x = ∂W / ∂x ...(57)

And

∂S / ∂ t= -α ...(58)

Substituting Eqs. (57) and (58) into (55), we get

   ...(59)

so that

 ...(60)

Taking the square root of each side Eq. (60), we have

 ...(61)

Integrating Eq. (61), we get

 ...(62)

Substituting Eq. (62) into Eq. (56), we have

 ...(63)

Applying the usual method, we obtain

 ...(64)  

And

 ...(65)  

Since v = pe-2λx, if we take  x(t=0) = 0, then p0 = v0

the Eq.(64) is

v0 = √2α eλx ...(66)  
  
Taking the square of each sides and substituting 
x = 0

 ...(67)  

 ...(68)  

Substituting Eq. (68) into Eq. (65) when x(t=0)=0, 
we get

  ...(69) 
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Finally, we can obtain x from the Eqs. (65), (68) 
and (69)

 ...(70) 

 ...(71)

Taking the logarithm of each side

 ...(72)

In fact, this result is in agreement with that obtained 
by Euler's equation

Linearly Damped Particle with Constant Force
A suitable Lagrangian for the linearly damped particle 
moving in one dimension under a constant force is.16

  ...(73)

The linear momentum is given by

 ...(74)

This equation can readily be solved to give

x ̇= pe-γt)  ...(75)

The Hamiltonian is 

H = px ̇ - L ...(76)

Substituting Eqs. (73) and (75) into Eq. (76) 

 ...(77)

The conjugate momentum is then

 ...(78)

Eq. (77) becomes

...(79)

The HJE is

  ...(80)

Where S = S (x, α, t),α is a parameter, the x 
and t variables areseparated by the assumption 

S (x,α,t) = W(x,α) T (t) ...(81)

So
 

...(82)

 ...(83)

The Eq. (80) becomes

 ...(84)

Divide Eq. (84) to T2 W and multiply by eγt

 ...(85)

Let

T=eγt ...(86)

So

 ...(87)

Substituting Eqs. (86) and (87) into Eq. (85), we get

 ...(88)

Eq. (88) becomes

 ...(89)

We can write Eq. (89)  as below

Wˊ2 + 2 γW + 2gx = 0 ...(90)

Differentiation Eq. (90) and Wˊ replaced by y  
Eq. (90) becomes

2Wˊ W˝ + 2Wˊ γ + 2g = 0 ...(91)

2yyˊ + 2γy + 2g = 0 ...(92)

Divide Eq. (91) on 2

yyˊ + γy + g = 0 ...(93)

Which is separable

 ...(94)
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Integration Eq. (94), we get

 ...(95)

Let

u = γy + g ...(96)

So

 ...(97)

Differentiate Eq. (97)

 ...(98)

Substituting Eqs. (97) and (98) into Eq. (95), we get

 ...(99)

 ...(100)

Eq. (100) becomes

-u + gln(u) = γ²(x + c) ...(101)

Instead of its value u in Eq. (101)

-γy - g + g ln (γy+g) = γ²(x + c) ...(102)

Differentiating Eq. (102) with respect to c

 ...(103)

l Unification of the denominators yield in Eq. (103), 
we have

 ...(104)

          ...(105)

Take out (γyˊ) a common factor in Eq. (105), we have

 ...(106)

Eq. (106) becomes

-yyˊ = γy + g ...(108)

So

 ...(109)

Eq. (109) becomes

  ...(110)

l From Eq. (110)

Wˊ2 = -2γW - 2gx ...(111)

Replace Wˊ by y in Eq. (111), we obtain

y2 = -2γW - 2gx ...(112)

Note that when derived Eq. (112) the limit (-2gx) 
equal zero

 ...(113)

Multiply Eq. (113) by (-1/2), we get

 ...(114)

From Eqs. (110) and (114), we have

 ...(115)

From Eqs. (106) and (115), we get

 ...(116)

Substituting Eq. (86) into Eq. (81)

S (x, α, t) =  W (x, α) eγt ...(117)

l Then, if the parameter α is identified as c,

 ...(118)

So

 ...(119)

From Eq. (116), we obtain

 ...(120)

Substituting Eq. (119) into Eq. (120)

       ...(121)
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Conclusion
In this paper, we have identified explicit time-
ependent first integrals for the damped systems valid 
in different parameter regimes using the modified 
Hamilton-Jacobi approach. We have constructed the 
appropriate Hamiltonians from the time-dependent 
first integrals and transformed the corresponding 
Hamiltonian forms to standard Hamiltonian forms 
using suitable canonical transformations. 

In addition, thesolution of the Hamilton-Jacobi 
equations forsuch dissipative Hamiltonians have 
been constructed. We have derived an expression 
for the Hamilton-Jacobi equation and have applied 
our results for a number of time-dependent models 
including dissipation terms. Among them are: 

friction linear in the velocity; friction quadratic in the 
velocity;friction quadratic in the velocity in a constant 
gravitational field; the linearly damped particle with 
constant force.

Acknowledgment 
The author thanks Mutah University for its continuous 
support for scientific research and for providing 
various research resources.

Funding
There are no funding sources.

Conflict of Interest
The authors do not have any conflict of interest.

References

1. Bateman, H. (1931). On dissipative systems 
and related variational principles, Phys. Rev. 
38, 815.

2. Caldirola, P. (1983). Quantum Theory of 
Nonconservative Systems, Nuovo Cimento 
18, 393 (1941); ibid 77, 241.

3. Kanai, E. (1948). On the Quantization of 
Dissipative Systems, Theor. Phys. 3, 440.

4. Havas, P. (1957). The Range of Application 
of the Lagrange Formalism, NuovoCimento, 
Suppl. 5, 363.

5. Bates, Sand Weinstein, A. (1997).“Lectures 
on the geometry of quantization”, 1st edition, 
American Mathematical Society, Berkeley 
Center for Pure and Applied Mathematics, 
Unites States of America.

6. Goldstein, H. (1980).“Classical Mechanics”, 
2nd edition, Addison-Wesley. New York.USA.

7. Sakurai, J, J. (1985). “Modern Quantum 
Mechanics”, 1st edition Benjamin- Cummings 
Publishing Compong,  Addison Wesley 
Longman, Unites States of America.

8. Rabei ,  E,  M. and Guler,  Y.  (1992). 
“Hamilton-Jacobi Treatment of Second-
Class Constraints”. Physical Review A,  
46(6), 3513–3515.

9. Rabei, M. (1996). “On Hamiltonian Systems, 
wi thConstraints” ,  Hadronic Journal ,  

19, 597–605.
10. Nawafleh, I, K. (2006).“Hamilton-Jacobi 

Formulation of the Reduced Phase Space”, 
Mu’tah Lil-Buhuth Wad-Dirasat: Natural and 
Applied Sciences Series 21 (1), 11-15.

11. Nawafleh, I, K.(2007).“Hamilton-Jacobi 
Formulation of Systems with Gauge 
Condit ions”,  Dirasat,  Pure Science .  
34 (1), 119-124.

12. Fowles, G. (1993). “Analytical Mechanics”, 5th 
edition, Harcourt Braceand Company, United 
States of America.

13. Batchelor, G, K. (1967). “An Introduction 
to Fluid Dynamics”,1st edition, Cambridge 
University Press, London.

14. Campos, I. Jimenez, J.  Del Valle, G. (2005).  
“A canonical Treatment of some systems 
with Friction”, European Journal of Physics,  
V. 26, 711-725.

15. Saletan, J, E.and Cromer, H,A. (1971). 
“Theoretical mechanics”, 1st edition,  Wiley, 
New York. 

16. Denman, H, H. and Buch, L, H. (1973). 
“Journal of Mathematical Physics”,V.14

17. Razavy, M. (2005).“Dissipative and Classical 
Quantum System”, 1st edition, Imperial 
College Press, London.


