

ISSN: 2456-799X, Vol.07, No.(1) 2022, Pg. 41-47

Oriental Journal of Physical Sciences

www.orientjphysicalsciences.org

Improved Modified Classes of Regression Type Estimators of Finite Population Mean in the Presence of Auxiliary Attribute

AWWAL ADEJUMOBI^{1*}, MOJEED ABIODUN YUNUSA², AHMED AUDU²

¹Department of Mathematics, Kebbi State University of Science and Technology, Aliero, Nigeria. ²Department of Statistics, Usmanu Danfodiyo University, Sokoto, Nigeria.

Abstract

In this research, estimators are suggested toimprove modified classes of regression type estimators of finite population mean. The essence of proposing the estimators is as a result of the assumption that there may be weak relationship between study variable and auxiliary attribute. Properties (Biases and MSEs) of the proposed estimators are procured using Taylor series method. The efficiency conditions under which the proposed estimators are better than other related ones are established. Empirical findings are incentive and the results shown that the proposed estimators are more proficient compare to the existing estimators considered in the study.

Article History Received: 29 July 2022

Accepted: 17 August 2022

Keywords

Auxiliary attribute; Bias; Efficiency; Ratio Estimator; Study variable.

Introduction

In sampling theory, auxiliary informationis used to increase the precision of estimate of an estimator whenthere is correlation between response variable and auxiliary variable. Authors have suggested different estimators note varying renowned parameters of an auxiliary information. In probability sampling, it is well confirmed that auxiliary variable may be qualitative form, such variable is term auxiliary attribute. Many authors in literature have suggested estimators using auxiliary variable, they include Cochran¹ who developed the ratio estimator to investigate problem of estimation of the population mean when auxiliary variable is present. Other researchers that developed estimators using auxiliary information include. Audu *et al.*,¹ Tailor *et al.*,¹¹ Singh,^{6,7} Kadilarand Cingi,³ Khoshnevisan *et al.*,⁴ Perri,⁵ Yunusa *et al.*,¹² Singh and Kumar.⁸

When the auxiliary information are qualitative in nature, that is, auxiliary information in the form of attribute, such as colour of hair of individuals and their weight can be regarded as auxiliary attribute

CONTACT Awwal Adejumobi awwaladejumobi@gmail.com Department of Mathematics, Kebbi State University of Science and Technology, Aliero, Nigeria.

^{© 2022} The Author(s). Published by Oriental Scientific Publishing Company

This is an **3** Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Doi: http://dx.doi.org/10.13005/OJPS07.01.07

and study variable, sex and height of women in a locality may be regarded as auxiliary attribute and study variable etc. Several authors have developed estimators in this direction likeSingh *et al.*,^{9,10} Zaman¹³ and Zaman and Kadilar.¹⁴

Currently in this research, we have intended efficient regression type estimators of finite population mean, that gives precise estimate for the size of finite population mean in the presence of auxiliary attribute when the bi-serial correlation between study variable and auxiliary attribute is weak.

Materials and Methods

Sample mean \overline{y}_m of simple random sampling is given as

$$\overline{y}_m = \frac{1}{n} \sum_{i=1}^n y_i \qquad \dots (1)$$

Bias and variance of \overline{y}_m is given by

$$Bias\left(\bar{y}_{m}\right)=0 \qquad \qquad \dots (2)$$

$$Var\left(\overline{y}_{m}\right) = \gamma \overline{Y}^{2} C_{y}^{2} \qquad \dots (3)$$

where
$$\gamma = \frac{1-f}{n}$$
, $\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$, $C_y = \frac{S_y}{\overline{Y}}$

Zaman and Kadilar¹⁴ class of exponential ratio type estimators in the presence of auxiliary attributeas.

$$\overline{y}_{zk} = \overline{y} \exp\left(\frac{(kP+l) - (kp+l)}{(kP+l) + (kp+l)}\right) \qquad \dots (4)$$

Bias and mean square error of the estimator \overline{y}_{zk} are given by

$$Bias(\bar{y}_{2k}) = \gamma \bar{Y} \left(\theta_i^2 C_{\phi}^2 + \theta_i \rho_{y\phi} C_y C_{\phi} \right) \qquad \dots (5)$$

$$MSE\left(\bar{y}_{zk}\right) = \gamma \bar{Y}^{2}\left(C_{y}^{2} + \theta_{i}^{2}C_{\phi}^{2} - 2\theta_{i}\rho_{y\phi}C_{y}C_{\phi}\right) \qquad \dots (6)$$

Zaman,¹³ an improved class of estimator for the estimation of population mean as

$$\overline{y}_{z} = \overline{y} \left(\frac{p}{P}\right)^{\alpha} \exp\left(\frac{(kP+l) - (kp+l)}{(kP+l) + (kp+l)}\right) \qquad \dots (7)$$

The MSE of the estimator is

$$MSE\left(\bar{y}_{zi}\right) = \gamma \bar{Y}^{2} \begin{pmatrix} C_{y}^{2} + \alpha^{2} C_{\phi}^{2} + \theta_{i}^{2} C_{\phi}^{2} - 2\alpha \theta_{i} C_{\phi}^{2} + 2\alpha \rho_{y\phi} C_{y} C_{\phi} \\ -2\theta_{i} C_{y} C_{\phi} \end{pmatrix} \dots (8)$$

Where
$$\alpha = \frac{\theta_i C_{\phi} - \rho_{y\phi} C_y}{C_{\phi}}$$
, $i = 0, 1, 2, ..., 9$.

$$MSE\left(\overline{y}_{zi}\right)_{\min} = \gamma \overline{Y}^2 C_y^2 \left(1 - \rho_{y\phi}^2\right) \qquad \dots (9)$$

Audu *et al.*¹ modified class of estimators for the population mean of the study variable in the presence of auxiliary attributeas

$$t_{pi} = \left(\overline{y} + b_{\phi}(P - p)\right) \exp\left(\frac{(kP + l) - (kp + l)}{(kP + l) + (kp + l)}\right) \ i = 0, 1, 2, \dots, 9$$
...(10)

$$t_{qi} = \frac{\left(\overline{y} + b_{\phi}(P - p)\right)(kP + l)}{\left(kp^{*} + l\right)} \exp\left(\frac{\left(kp^{*} + l\right) - \left(kP + l\right)}{\left(kp^{*} + l\right) + \left(kP + l\right)}\right) \ i = 0, 1, 2, ..., 9$$
....(11)

bias and mean square error of the estimator $\boldsymbol{t}_{_{\text{pi}}}$ and $\boldsymbol{t}_{_{\text{qi}}}$ are given by

$$Bias(t_{pi}) = \gamma \left[\left(\frac{3w_2^2 \overline{Y}}{8} + b_{\phi} w_2 P \right) C_{\phi}^2 - \overline{Y} w_2 \rho_{y\phi} C_y C_{\phi} \right] \quad i = 1, 2, ..., 9$$
...(12)

$$Bias(t_{qi}) = -\gamma \overline{Y}\left(g^2 w_1 w_2 - \frac{g^2 w_2^2}{2}\right) C_{\phi}^2 \quad i = 0, 1, 2, ..., 9$$
...(13)

$$MSE(t_{pt}) = \gamma \overline{Y}^{2} \left(C_{y}^{2} + \left(w_{1} + \frac{b_{\phi}P}{\overline{Y}} \right)^{2} C_{\phi}^{2} - 2 \left(w_{1} + \frac{b_{\phi}P}{\overline{Y}} \right) \rho_{y\phi} C_{y} C_{\phi} \right) i = 1, 2, ..., 9$$
....(14)

$$MSE(t_{qi}) = \gamma \left(\bar{Y}^2 C_y^2 + b_{\phi}^2 P^2 C_{\phi}^2 - 2 \bar{Y} P b_{\phi} \rho_{y\phi} C_y C_{\phi} \right) \quad i = 0, 1, 2, ..., 9$$

...(15)

Where,
$$w_1 = \frac{kP}{2(kP+l)}$$
, $w_2 = \frac{kP}{(kP+l)}$, $g = \frac{n}{N-n}$, $p^* = \frac{NP-np}{N-n}$, $b_{\phi} = \frac{\rho_{\gamma\phi}\bar{T}C_{\gamma}}{C_{\phi}}$

Suggested Estimators

By exploiting the idea of Audu *et al.*¹ and other estimators in literature, finite population mean based on the presence of auxiliary attribute for estimation of population mean of study variable are proposed

$$T_{ri} = \left[\overline{y}_{h} + a_{i}\left(P - p\right) + b_{i}\overline{y}\right] \exp\left(\frac{(kP + l) - (lp + l)}{(kP + l) + (lp + l)}\right)$$

...(16)
$$T_{qi} = \frac{\left[\overline{y}_{h} + u_{i}(P - p) + v_{i}\overline{y}\right](kP + l)}{(kp^{*} + l)} \exp\left(\frac{(kp^{*} + l) - (kP + l)}{(kp^{*} + l) + (kP + l)}\right)$$

...(17)

Where
$$\overline{y}_{h} = \frac{\overline{y}}{2} \left(\exp\left(\frac{P-p}{P+p}\right) + \exp\left(\frac{p-P}{P+p}\right) \right)$$
,

 a_i , b_i , u_i , and v_i are invariable to be determined, i=1,2,...,10. The suggested estimators will be defined if and only if $a_i \neq 0$, $b_i \neq 0$, $u_i \neq 0$, $v_i \neq 0$, and $\overline{y}_h \neq 0$. The estimator was obtained by incorporating unknowns into the estimators and taken the sample mean in the estimators of Audu *et al.*¹ as the average of the exponential ratio and product type estimators.

		Values of k and l	
Estima	ators	К	1
1	$T_{r1} = \left[\overline{y}_h + a_1(P - p) + b_1\overline{y}\right] \exp\left(\frac{P - p}{P + p}\right)$	1	0
2	$T_{r2} = \left[\overline{y}_{h} + a_{2}(P-p) + b_{2}\overline{y}\right] \exp\left(\frac{P-p}{P-p+2\beta_{2(\phi)}}\right)$	1	$eta_{2({}^{arphi})}$
3	$T_{r3} = \left[\overline{y}_h + a_3(P - p) + b_3\overline{y}\right] \exp\left(\frac{P - p}{P - p + 2C_{\phi}}\right)$	1	C_{ϕ}
4	$T_{r4} = \left[\overline{y}_h + a_4(P-p) + b_4\overline{y}\right] \exp\left(\frac{P-p}{P-p+2\rho_{y\phi}}\right)$	1	$ ho_{_{y\phi}}$
5	$T_{rs} = \left[\bar{y}_{ij} + a_{s}(P-p) + b_{s}\bar{y}\right] \exp\left(\frac{\beta_{2(j)}(P-p)}{\beta_{2(j)}(P+p) + 2C_{j}}\right)$	$eta_{2(\phi)}$	C_{ϕ}
6	$T_{r6} = \left[\bar{y}_{h} + a_{6}(P-p) + b_{6}\bar{y}\right] \exp\left(\frac{C_{\theta}(P-p)}{C_{\theta}(P-p) + 2\beta_{2 \theta }}\right)$	C_{ϕ}	$eta_{2({}^{\phi})}$
7	$T_{r^{\gamma}} = \left[\overline{y}_{h} + a_{r}(P - p) + b_{\gamma}\overline{y}\right] \exp\left(\frac{C_{\phi}(P - p)}{C_{\phi}(P - p) + 2\rho_{\gamma\phi}}\right)$	C_{ϕ}	$ ho_{_{\mathcal{Y}}\!\phi}$
8	$T_{r\mathfrak{s}} = \left[\overline{y}_{i} + a_{\mathfrak{s}}(P-p) + b_{\mathfrak{s}}\overline{y}\right] \exp\left(\frac{\rho_{;\mathfrak{y}}(P-p)}{\rho_{;\mathfrak{y}}(P-p) + 2C_{\mathfrak{y}}}\right)$	$ ho_{_{y\phi}}$	C_{ϕ}
9	$T_{r9} = \left[\overline{y}_{h} + \alpha_{9}(P - p) + b_{9}\overline{y}\right] \exp\left(\frac{\beta_{2(\theta)}(P - p)}{\beta_{2(\theta)}(P - p) + 2\rho_{y\theta}}\right)$	$eta_{\scriptscriptstyle 2(\phi)}$	$ ho_{_{3^{\phi}}}$
10	$T_{\rm r40} = \left[\overline{y}_{h} + a_{\rm 10}\left(P - p\right) + b_{\rm 10}\overline{y}\right] \exp\left(\frac{\rho_{\rm yy}(P - p)}{\rho_{\rm yy}\left(P - p\right) + 2\beta_{\rm l(y)}}\right)$	$ ho_{y\phi}$	$eta_{2({}^{\phi})}$

Table 1: Members of the proposed estimators T_{ri}.

To obtain the biases and MSEs of T_{ri} and T_{qi} , the following error terms are defined as $e_0 = \frac{\overline{y} - \overline{Y}}{\overline{Y}}$ and even that $\overline{y} = \overline{Y}(1 + a_1)$

such that and $e_1 = \frac{p-P}{P}$ such that $\overline{y} = \overline{Y}(1+e_0)$ and $p = P(1+e_1)$

$$E(e_{h}) = 0, h = 0, 1., E(e_{0}^{2}) = \lambda C_{y}^{2},$$

$$E(e_{1}^{2}) = \lambda C_{y}^{2}, E(e_{0}e_{1}) = \lambda \rho_{y\phi}C_{y}C_{\phi}$$
...(18)

Expressing (16) and (17) in terms of error terms, we have

$$T_{r_{i}} = \left[\overline{Y} \left(1 + \frac{e_{i}^{2}}{8} + e_{0} \right) - a_{r}Pe_{1} + b_{i}\overline{Y} \left(1 + e_{0} \right) \right] \exp\left(\frac{-kPe_{1}}{2(kP + l) + kPe_{1}} \right)$$
....(19)
$$T_{q_{i}} = \frac{\left[\overline{Y} \left(1 + \frac{e_{i}^{2}}{8} + e_{0} \right) - u_{i}Pe_{1} + v_{i}\overline{Y} \left(1 + e_{0} \right) \right] (kP + l)}{(kP + l - kPge_{1})} \exp\left(\frac{-kPge_{1}}{2(kP + l) - kPge_{1}} \right)$$
....(20)

Simplify (19) and (20), then obtained

$$T_{ri} - \overline{Y} = \overline{Y} \begin{bmatrix} \left(e_0 - \frac{\theta_i e_1}{2} + \frac{(3\theta_i^2 + 1)e_1^2}{8} - \frac{\theta_i e_0 e_1}{2} \right) - a_i \frac{P}{\overline{Y}} \left(e_1 - \frac{\theta_i e_1^2}{2} \right) \\ + b_i \left(1 + e_0 - \frac{\theta_i e_1}{2} + \frac{3\theta_i^2 e_1^2}{8} - \frac{\theta_i e_0 e_1}{2} \right) \\ \dots (21) \end{bmatrix}$$

$$T_{qi} - \overline{Y} = \overline{Y} \begin{bmatrix} \left(e_0 + \frac{g\theta_i e_1}{2} + \frac{(3g^2\theta_i^2 + 1)e_1^2}{2} + \frac{g\theta_i e_0 e_1}{2} \right) - u_i \frac{P}{\overline{Y}} \left(e_1 + \frac{g\theta_i e_1^2}{2} \right) \\ + v_i \left(1 + e_0 + \frac{g\theta_i e_1}{2} + \frac{3g^2\theta_i^2 e_1^2}{8} + \frac{g\theta_i e_0 e_1}{2} \right) \\ \dots (22) \end{bmatrix}$$

Where, $\theta_i = kP / (kP + l), i = 1, 2,, 10$.

Taking expectation of (21) and (22) and apply the results of (18) to obtain the biases of the T_{ri} and T_{qi} as

$$Bias(T_{r_{t}}) = \overline{Y}\gamma \begin{bmatrix} \frac{(3\theta_{i}^{2}+1)C_{\phi}^{2}}{8} - \frac{\theta_{i}\rho_{y\phi}C_{y}C_{\phi}}{2} + a_{i}\frac{P}{\overline{Y}}\frac{\theta_{i}C_{\phi}^{2}}{2} \\ + b_{i}\left(1 + \frac{3\theta_{i}^{2}C_{\phi}^{2}}{8} - \frac{\theta_{i}\rho_{y\phi}C_{y}C_{\phi}}{2}\right) \\ & \dots (23) \end{bmatrix}$$

$$Bias(T_{qi}) = \overline{Y}\gamma \begin{bmatrix} \frac{(3g^2\theta_i^2 + 1)C_{\phi}^2}{2} + \frac{g\theta_i\rho_{y\phi}C_yC_{\phi}}{2} - u_i \frac{P}{\overline{Y}}\frac{g\theta_iC_{\phi}^2}{2} \\ + v_i\left(1 + \frac{3g^2\theta_i^2C_{\phi}^2}{8} + \frac{g\theta_i\rho_{y\phi}C_yC_{\phi}}{2}\right) \end{bmatrix}$$
...(24)

Squaring and taking expectation of (21) and (22) and apply the results of (18) to obtain the MSE of proposed estimators as T_{ri} and T_{ai} as

$$MSE(T_{ri}) = \overline{Y}^{2}(A_{i} + a_{i}^{2}B_{i} + b_{i}^{2}C - 2a_{i}D_{i} + 2b_{i}E_{i} - 2a_{i}b_{i}F_{i}) \qquad ...(25)$$

$$MSE(T_{qi}) = \overline{Y}^{2} \left(A_{1i} + u_{i}^{2} B_{1i} + v_{i}^{2} C_{1i} - 2u_{i} D_{1i} + 2v_{i} E_{1i} - 2u_{i} v_{i} F_{1i} \right)$$
 ...(26)

$$\begin{split} & \text{Where } \mathcal{A}_{i} = \gamma \Bigg(C_{y}^{2} + \frac{\theta_{i}^{2} C_{\phi}^{2}}{4} - \theta_{i} \rho_{y\phi} C_{y} C_{\phi} \Bigg), \ B_{i} = \gamma \frac{P^{2}}{\overline{Y}^{2}} C_{\phi}^{2}, \\ & C_{i} = 1 + \gamma \left(C_{y}^{2} + \theta_{i}^{2} C_{\phi}^{2} - 2 \theta_{i} \rho_{y\phi} C_{y} C_{\phi} \right), \\ & D_{i} = \gamma \frac{P}{\overline{Y}} \Bigg(\rho_{y\phi} C_{y} C_{\phi} - \frac{\theta_{i} C_{\phi}^{2}}{2} \Bigg), \ E_{i} = \gamma \Bigg(C_{y}^{2} - \frac{3\theta_{i} \rho_{y\phi} C_{y} C_{\phi}}{2} + \frac{(5\theta_{i}^{2} + 1)C_{\phi}^{2}}{8} \Bigg), \ F_{i} = \gamma \frac{P}{\overline{Y}} \Big(\rho_{y\phi} C_{y} C_{\phi} - \theta_{i} C_{\phi}^{2} \Big), \\ & D_{ii} = \gamma \frac{P}{\overline{Y}} \Bigg(\rho_{y\phi} C_{y} C_{\phi} + \frac{g\theta_{i} C_{\phi}^{2}}{2} \Bigg), \ E_{ii} = \gamma \Bigg(C_{y}^{2} + \frac{3g\theta_{i} \rho_{y\phi} C_{y} C_{\phi}}{2} + \frac{(5g^{2}\theta_{i}^{2} + 1)C_{\phi}^{2}}{8} \Bigg), \\ & F_{1i} = \gamma \frac{P}{\overline{Y}} \Bigg(\rho_{y\phi} C_{y} C_{\phi} + g\theta_{i} C_{\phi}^{2} \Bigg). \end{split}$$

Differentiating (25) with respect to a_i and b_i , equate to zero and solve for a_i and b_i simultaneously,

we obtain
$$a_i = \frac{E_iF_i - C_iD_i}{F_i^2 - B_iC_i}$$
 and $b_i = \frac{B_iE_i - D_iF_i}{F_i^2 - B_iC_i}$

Substituting the results in (25), we obtained the minimum MSE of T_{ri} as

$$MSE(T_{r_{i}})_{\min} = \overline{Y}^{2} \left(A_{i} + \left(\frac{C_{i}D_{i}^{2} + B_{i}E_{i}^{2} - 2D_{i}E_{i}F_{i}}{F_{i}^{2} - B_{i}C_{i}} \right) \right) \qquad \dots (27)$$

Differentiating (26) with respect to u_i and v_i , equate to zero and solve for u_i and v_i simultaneously,

we obtain
$$u_i = \frac{E_{1i}F_{1i} - C_{1i}D_{1i}}{F_{1i}^2 - B_{1i}C_{1i}}$$
 and $v_i = \frac{B_{1i}E_{1i} - D_{1i}F_{1i}}{F_{1i}^2 - B_{1i}C_{1i}}$.

Substituting the results in (26), we obtained the minimum MSE of $\rm T_{\rm cl}$ as

$$MSE(T_{ql})_{\min} = \bar{Y}^{2} \left(A_{ll} + \left(\frac{C_{ll}D_{ll}^{2} + B_{ll}E_{ll}^{2} - 2D_{ll}E_{ll}F_{ll}}{F_{ll}^{2} - B_{ll}C_{ll}} \right) \right) \qquad \dots (28)$$

Efficiency Comparisons

The suggested estimators T_{ri} and T_{qi} are more efficient than \overline{y}_{m} , \overline{y}_{s1} , \overline{y}_{s2} , \overline{y}_{zk} , \overline{y}_{z} , t_{pi} and t_{qi} , if the following condition are satisfied

 $MSE(T_{ri})_{min} < Var(\bar{y}_m)$ and if $MSE(T_{qi})_{min} < Var(\bar{y}_m)$

$$A_{i} + \frac{C_{i}D_{i}^{2} + B_{i}E_{i}^{2} - 2D_{i}E_{i}F_{i}}{F_{i}^{2} - B_{i}C_{i}} < \gamma C_{y}^{2} \qquad \dots (29)$$

$$A_{1i} + \frac{C_{1i}D_{1i}^2 + B_{1i}E_{1i}^2 - 2D_{1i}E_{1i}F_{1i}}{F_{1i}^2 - B_{1i}C_{1i}} < \gamma C_y^2 \qquad \dots (30)$$

 $MSE(T_{ri})_{min} < MSE(\overline{y}_{s1}) \text{ and } MSE(T_{qi})_{min} < MSE(\overline{y}_{s1}) \text{ if }$

$$A_{i} + \frac{C_{i}D_{i}^{2} + B_{i}E_{i}^{2} - 2D_{i}E_{i}F_{i}}{F_{i}^{2} - B_{i}C_{i}} < \gamma \left(C_{y}^{2} + \frac{C_{\phi}^{2}}{4} - \rho_{y\phi}C_{y}C_{\phi}\right) \qquad ...(31)$$

$$A_{ii} + \frac{C_{ii}D_{ii}^{2} + B_{ii}E_{1i}^{2} - 2D_{ii}E_{1i}F_{1i}}{F_{1i}^{2} - B_{1i}C_{1i}} < \gamma \left(C_{y}^{2} + \frac{C_{\phi}^{2}}{4} - \rho_{y\phi}C_{y}C_{\phi}\right) \qquad ...(32)$$

 $MSE(T_{r_i})_{min} < MSE(\bar{y}_{s2})_{min}$ and $MSE(T_{q_i})_{min} < MSE(\bar{y}_{s2})_{min}$ if

$$A_{i} + \frac{C_{i}D_{i}^{2} + B_{i}E_{i}^{2} - 2D_{i}E_{i}F_{i}}{F_{i}^{2} - B_{i}C_{i}} < \gamma \left(C_{y}^{2} + \frac{C_{\phi}^{2}}{4} - \rho_{y\phi}C_{y}C_{\phi}\right) \qquad \dots (33)$$

$$A_{li} + \frac{C_{li}D_{li}^{2} + B_{li}E_{li}^{2} - 2D_{li}E_{li}F_{li}}{F_{li}^{2} - B_{li}C_{li}} < \gamma C_{y}^{2} \left(1 - \rho_{y\phi}^{2}\right) \qquad \dots (34)$$

 $MSE(T_{ri})_{min} < MSE(\overline{y}_{zk})$ and $MSE(T_{qi})_{min} < MSE(\overline{y}_{zk})$ if

$$A_{i} + \frac{C_{i}D_{i}^{2} + B_{i}E_{i}^{2} - 2D_{i}E_{i}F_{i}}{F_{i}^{2} - B_{i}C_{i}} < \gamma \left(C_{y}^{2} + \theta_{i}^{2}C_{\phi}^{2} - 2\theta_{i}\rho_{y\phi}C_{y}C_{\phi}\right) \qquad ...(35)$$

$$A_{li} + \frac{C_{li}D_{li}^{2} + B_{li}E_{li}^{2} - 2D_{li}E_{li}F_{li}}{F_{li}^{2} - B_{li}C_{li}} < \gamma \left(C_{y}^{2} + \theta_{i}^{2}C_{\phi}^{2} - 2\theta_{i}\rho_{y\phi}C_{y}C_{\phi}\right) \qquad ...(36)$$

 $MSE(T_{ri})_{min} < MSE(\overline{y}_{zi})_{min}$ and $MSE(T_{qi})_{min} < MSE(\overline{y}_{zi})_{min}$ if

$$A_{i} + \frac{C_{i}D_{i}^{2} + B_{i}E_{i}^{2} - 2D_{i}E_{i}F_{i}}{F_{i}^{2} - B_{i}C_{i}} < \gamma C_{y}^{2} \left(1 - \rho_{y\phi}^{2}\right) \qquad ...(37)$$

$$A_{1i} + \frac{C_{1i}D_{1i}^2 + B_{1i}E_{1i}^2 - 2D_{1i}E_{1i}F_{1i}}{F_{1i}^2 - B_{1i}C_{1i}} < \gamma C_y^2 \left(1 - \rho_{y\phi}^2\right) \qquad ...(38)$$

 $MSE(T_{ri})_{\min} < MSE(t_{pi})$ and $MSE(T_{qi})_{\min} < MSE(t_{pi})$ if

$$A_{i} + \frac{C_{i}D_{i}^{2} + B_{i}E_{i}^{2} - 2D_{i}E_{i}F_{i}}{F_{i}^{2} - B_{i}C_{i}} < \gamma \left(C_{y}^{2} + \Delta_{i}^{2}C_{\phi}^{2} - 2\Delta_{i}\rho_{y\phi}C_{y}C_{\phi}\right) \qquad ...(39)$$

$$A_{ti} + \frac{C_{1i}D_{ii}^{2} + B_{1i}E_{1i}^{2} - 2D_{1i}E_{1i}F_{1i}}{F_{1i}^{2} - B_{1i}C_{1i}} < \gamma \left(C_{y}^{2} + \Delta_{i}^{2}C_{\phi}^{2} - 2\Delta_{i}\rho_{y\phi}C_{y}C_{\phi}\right) \qquad \dots (40)$$

Where,
$$\Delta = w_1 + \frac{b_{\phi}P}{\overline{Y}}$$
.
 $MSE(T_{ri})_{min} < MSE(t_{ai})$ and $MSE(T_{ai})_{min} < MSE(t_{ai})$ if

$$A_{i} + \frac{C_{i}D_{i}^{2} + B_{i}E_{i}^{2} - 2D_{i}E_{i}F_{i}}{F_{i}^{2} - B_{i}C_{i}} < \gamma \left(C_{y}^{2} + \frac{b_{\phi}^{2}P^{2}C_{\phi}^{2}}{\overline{Y}^{2}} - \frac{2P\rho_{y\phi}b_{\phi}C_{y}C_{\phi}}{\overline{Y}}\right) \qquad ...(41)$$

$$4_{ii} + \frac{C_{1i}D_{ii}^{2} + B_{ii}E_{1i}^{2} - 2D_{ii}E_{1i}F_{1i}}{F_{1i}^{2} - B_{ii}C_{1i}} < \gamma \left(C_{\gamma}^{2} + \frac{b_{\gamma}^{2}P^{2}C_{\phi}^{2}}{\bar{Y}^{2}} - \frac{2P\rho_{\gamma\phi}b_{\phi}C_{\gamma}C_{\phi}}{\bar{Y}}\right) \qquad \dots (42)$$

Empirical Study

In this section, the suggested estimators ${\rm T}_{\rm ri}$ and $T_{_{qi}}$ performance are assessed with that of the sample mean \overline{y}_{m} , Audu *et al.*¹ estimators, t_{pi} and t_{ai} numerically considering two natural populations used as.

Population 1: Zaman¹³

 $\phi_{i} = \begin{cases} 1, & \text{if a circle consists of more than five villages} \\ 0, & \text{otherwise} \end{cases}$

 $N=89, n=20, \overline{Y}=3.3596, P=0.1236, \beta_{2(\phi)}=3.492, C_y=0.6008, C_\phi=2.6779, \rho_{y\phi}=0.766$

Population 2: Zaman¹³

 $\phi_i = \begin{cases} 1, & \text{if the numbe of teachers is more than sixty} \\ 0, & \text{or } d \end{cases}$

0, otherwise

$$N = 111, n = 30, \overline{Y} = 29.279, P = 0.117, \beta_{2(\phi)} = 3.898, C_y = 0.872, C_{\phi} = 2.758, \rho_{y\phi} = 0.797, C_{\phi} = 0.797, C_{\phi$$

Estimators	MSE	PRE	Estimators	MSE	PRE
Sample mean estimator			$\overline{\mathcal{Y}}_m$	0.1579298	100.00
		Audu e <i>t al.</i> ¹ I	Estimators		
t_{p1} t_{p3} t_{p5} t_{p7} t_{p9}	0.0661802 0.08040544 0.07114321 0.0661782 0.06581011	238.636 196.4168 221.9886 238.6432 239.978	t _{p2} t _{p4} t _{p6} t _{p8} t _{qi}	0.06679036 0.08037597 0.1366728 0.167143 0.06526354	236.456 196.4888 115.5532 94.48783 241.9878

Table 3: MSEs and PREs of suggested estimators and existing ones using population 1

Suggested Estimators

T _{r1}	0.001670981	9451.3223	T _{q1}	0.044078	358.2962
T _{r2}	0.0467923	337.5124	T _{q2}	0.04682617	337.2682
T _{r3}	0.04676769	337.6900	T _{q3}	0.0468241	337.2832
T _{r4}	0.04621405	341.7355	T _{q4}	0.04677797	337.6158
T _{r5}	0.04621526	341.7265	T _{q5}	0.04677807	337.6150
T _{r6}	0.04659158	338.9664	T _{q6}	0.04680936	337.3894
T _{r7}	0.04383939	360.2463		0.04658672	339.0018
T _{r8}	0.0467924	337.5116	T _{a8}	0.04682618	337.2682
T _{r9}	0.04245525	371.6411		0.04648274	339.7601
T _{r10}	0.04680724	337.4046	T _{q10}	0.04682742	337.2592

Table 4: MSEs and PREs	of suggested estimation	ators and existing o	nes using population 2

Estimators	MSE	PRE	Estimators	MSE	PRE
Sample mean estimator		$\overline{\mathcal{Y}}_m$		15.85573	100.00
		Audu e <i>t al.</i> 1 E	Estimators		
t _{p1}	5.817701 6.4338	272.5429 246.4443	t _{p2}	5.849699 6.582441	271.0521 240.8792
t _{p3} t _{p5}	6.015808	263.5678	t _{p4} t _{p6}	9.077466	174.6713
ς _{p5} t _{p7} t _{p9}	5.826441 5.805672	272.1341 273.1076	t _{p8} t _{qi}	11.03681 5.784028	143.6623 274.1296
		Suggested E	stimators		
T _{r1}	3.39183	467.4683	T _{q1}	4.854043	326.6500
T _{r2}	5.023029	315.6607	T _n 2	5.023891	315.6066
T _{r3}	5.022078	315.7205	I _{a3}	5.023761	315.6147
T _{r4}	5.004624	316.8216	I	5.021381	315.7643
T _{r5}	5.000151	317.1050	T_{q5}^{q+}	5.020775	315.8024
T _{r6}	5.017135	316.0316	I _{de}	5.023085	315.6572
T _{r7}	4.9231	322.0645		5.010563	316.4461
T _{r8}	5.022769	315.6771		5.023856	315.6088
T _{r9}	4.86016	326.2388		5.002496	316.9564
T _{r10}	5.023386	315.6383	T _{q10}	5.02394	315.6035

Table 3 and 4 show the Mean Square Errors and Percentage Relative Efficiencies of the sample mean, \overline{y}_m , Audu *et al.*, ¹ t_{pi} and T_{qi}, and suggested estimators, T_{ri} and T_{qi} estimators, considering two data sets respectively. The results revealed that the suggested estimators T_{ri} and T_{qi} have minimum MSEs and higher PREs as compared to the sample mean, Audu *et al.*¹ estimators.

Results and Discussion

An improved classes of regression type estimators of finite population mean are suggested. Table 3 shows MSEs and PREs of the suggested and some existing estimators using dataset 1. The result shows that the suggested estimators have minimum MSEs and higher PREs compared to the conventional estimators and Audu *et al.*¹ estimators. Table 4 shows MSEs and PREs of the suggested and some existing estimators using dataset 2. The result shows that the suggested estimators have minimum MSEs and higher PREs compared to the conventional estimators and Audu *et al.*¹ estimators.

Conclusion

In this research, we proposed an improved modified regression estimators for the estimation of population mean in the presence of auxiliary attribute. The results of the empirical study revealed that the proposed estimators are more efficient than sample mean and Audu *et al.*¹ estimators. This implies that the proposed estimators have great chance of producing precise estimate.

Acknowledgment

The authors are profoundly grateful to the editors for the corrections and guidance made on this research.

Funding

The authors received no financial support for the research, authorship and publication of this article.

Conflict of Interest

The authors declare no conflict of interest.

References

- Audu A., Abdulazeez S.A., Danbaba A., Ahijjo Y.M., Gidado A. and Yunusa M.A., Modified Classes of Regression-type Estimators of Population Mean in the presence of Auxiliary Attribute. *Asian Research Journal* of Mathematics; 18(1): 65-89. DOI: 10.9734/ARJOM/2022/v18i130355, (2022).
- 2. Cochran W.G., Sampling techniques. New York, NY: John Wiley and Sons. (1977).
- Kadilar C. and Cingi H. A., New estimator using two auxiliary variables. *Applied Mathematics* and Computation; 16(2): 901–908, (2005).
- Khoshnevisan M., Singh R., Chauhan P., Sawan N. and Smarandache F. A., General family of estimators for estimating population mean using known value of some population parameter(s). *Far East Journal of Theoretical Statistics*; 22(2): 181–191, (2007).
- 5. Perri P.F., Improved ratio-cum-product type estimators. *Statist Trans*; 8(2): 51- 69, (2007).
- Singh M.P.,On the estimation of ratio and product of the population parameters. Sankhya B; 2(7): 231-328, (1965).
- Singh M.P., Ratio cum product method of estimation. *Metrika*; 1(2): 34–42, (1967)
- 8. Singh R. and Kumar M. A., Note on transformations on auxiliary variable in survey sampling. *MASA*; 6(1): 17-19, (2011).
- 9. Singh R., Chauhan P., Sawan N. and Smarandache F., Auxiliary information and

a priori values in construction of improved estimators. *Renaissance High Press*. DOI: 10.9734/AJPAS/2021/v14i230323, (2007).

- Singh R., Chauhan P. and Sawan N., Ratioproduct type exponential for estimating finite population mean using information on auxiliary attribute. *Journal of Statistics and Management Systems*; 81(7): 679-1067, (2013).
- Tailor R., Chouhan S. and Garg N., A ratiocum-product estimator of population mean in stratified random sampling using two auxiliary variables. STATISTICA, annoLXXII; 3, (2012).
- Yunusa M.A., Audu A., Musa N., Beki D.O., Rashida A., Bello A.B. and Hairullahi M.U., Logarithmic ratio-type estimator of population coefficient of variation. *Asian Journal ofProbability and Statistics*; 14(2): 13-22, (2021).
- Zaman T., Generalized exponential estimators for the finite population mean. *Statistics in transition*; 21(1): 159-168, (2020).
- Zaman T. and Kadilar C., Novel family of exponential estimators using information of auxiliary attribute. *Journal of Statistics and Management Systems*; 34(7): 978-1078, (2019).